МИНОБРНАУКИ РОССИИ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» В Г.НОВОРОССИЙСКЕ (НФ БГТУ им. В.Г.Шухова)

Методические указания и задания к выполнению расчетно-графического задания по дисциплине «Энергетические установки наземных транспортно-технологических машин»» для направления подготовки: 23.03.02 «Наземные транспортно-технологические комплексы»

Разработал: ст. преподаватель Картыгин А.В.

Содержание

1 Требования и порядок выполнения расчетно-графическо	ОГО
задания (РГЗ)	
2 Задание	3
Расчет	5
4 Пример расчета	14
Список использованных источников	27
Приложения	28

1 Требования и порядок выполнения расчетно-графического задания (РГЗ)

При выполнении РГЗ студент вначале изучает задание, намечает общий план выполнения, а затем выполняет отдельные пункты задания.

РГЗ должно соответствовать варианту (Таблица 1) и отвечать всем требованиям.

Работы, выполняемые не по своему варианту и не в полном объеме, без необходимых схем, рисунков, расчетов и пояснений, возвращаются для доработки.

Все схемы и рисунки, приведенные в работе, должны быть объяснены в текстовой части и наоборот — все пояснения, данные в тексте, должны иллюстрироваться схемами и рисунками.

Все вычисления в РГЗ производят сначала в общем виде, обозначая все данные и искомые величины буквами, после чего вместо буквенных обозначений проставляют их числовые значения.

2 Задание

Тема РГЗ: «Рассчитать рабочий цикл четырехтактного дизеля и построить индикаторную диаграмму»

РГЗ часть 1:

- 1. Описать назначение, классификацию и область применения ДВС.
- 2. Привести описание устройства ДВС.
- 3. Описать рабочий процесс ДВС.
- 4. Рассчитать рабочий цикл четырехтактного дизеля.

Эффективная мощность $N_{e_{H}}$ кВт при частоте вращения коленчатого вала n_{H} мин $^{-1}$.

РГЗ часть 2:

- 1. Рассчитать индикаторные параметры рабочего цикла;
- 2. Рассчитать эффективные показатели двигателя;
- 3. Построить индикаторную диаграмму.

Исходные данные приведены в таблице1 и получены в результате выполнения КР часть1.

Таблица 1- Исходные данные к РГЗ

Таблиц	ца 1- Исходные д	анные к РГЗ							
Последние	Показатели								
цифры зачетки	Эффективная мощность, кВт	Частота вращения, мин ⁻¹	Степень сжатия	Отношение S/D	Тип камеры сгорания				
01,51	22	2200	16.5	1.15	Cropuniii				
02,52	22	2300	16.1	1.13	 				
03,53	44	2200	16.5	1.15	 				
04,54	44.1	2300	16.1	1.13					
05,55	59.6	2200	16.0	1.1					
06,56	52.9	2200	15.8	1.15					
07,57	77.2	2200	15.1	1.15					
08,58	110	2100	15.1	1.15					
09,59	116.1	2200	15.1	1.13					
10,60	121	2100	15.0	0.9					
11,61	220	1900	16.5	1.1					
12,62	122	2600	16.3	1.1					
13,63	154	2600	17	1.1	_				
·									
14,64	132 195	2100 2300	15.5 16.5	1.1	 				
15,65									
16,66	235.4	2500	17.2	1.05	CK —				
17,67	242.7	2200	15	1.15	непосредственный впрыск				
18,68	121	1850	15	1.2					
19,69	151	1750	16.5	1.15	— X				
20,70	206	2000	17	1.05	— H				
21,71	282	1700	18.5	1.1					
22,72	130	1350	15	1.2	— CT				
23,73	340	1870	17.5	1.1	ед —				
24,74	176	1900	16	1.15					
25,75	279	1775	18	0.8	— эпе				
26,76	52.9	2200	-	1.15	H				
27,77	77.2	2200	-	1.1	— <u> </u>				
28,78	110	2100	-	1.15	неразделенная				
29,79	116.1	2200	-	1.1					
30,80	121	2100	-	0.9	Ще <u>л</u>				
31,81	220	1900	-	0.95	9a3,				
32,82	122	2600	-	0.85	— Нер				
33,83	154	2600	-	1					
34,84	132	2100	-	1.1					
35,85	195	2300	-	1.2					
36,86	22	2200	-	1.15					
37,87	22	2300	-	1.2					
38,88	44	2200	-	1.15					
39,89	44.1	2300	-	1.2					
40,90	59.6	2200	-	1.1					
41,91	235.4	2500	-	1.15					
42,92	242.7	2200	-	1.1					
43,93	121	1850	-	1.15					
44,94	151	1750	-	1.1					
45,95	206	2000	-	0.9					
46,96	282	1700	-	0.95					
47,97	130	1350	-	0.85					
48,98	340	1870	-	1					
49,99	176	1900	-	1.1					
50, 00	279	1775	-	1.2					

3 Расчет

Расчетно-графическое задание 1 часть

Находим диаметр цилиндра (приложение А).

Назначив стандартный D (в мм, округленный на 0 или 5 - для дизелей, или до ближайшего четного числа - для карбюраторных двигателей), по соответствующему соотношению S/D определяют ход поршня S

$$S=D\cdot(S/D), M$$
 (1)

где S - ход поршня;

D – диаметр цилиндра.

Ориентировочная средняя скорость поршня вычисляется по формуле

$$\nu_{i.\tilde{n}\tilde{o}} = \frac{S \cdot n_i}{30}, \, \text{M/c}$$
 (2)

По принятому диаметру цилиндра устанавливают пределы изменения литровой мощности двигателя $N_{e\pi}$ (приложение Б).

Находим цилиндровую мощность, $N_{\mbox{\tiny ц}}$.

$$N_{u} = N_{e\pi} \cdot V_{h} = N_{e\pi} \frac{\pi \cdot D^{3}}{4} \cdot \frac{S}{D}, \text{ kBT}$$
(3)

где V_h - рабочий объем цилиндра, л;

D и S - в дм.

При заданной эффективной мощности двигателя $N_{\text{ен}}$ требуемое число цилиндров определяется по формуле

$$i=N_{eH}/N_{II}$$
 (4)

Полученное значение i округляют до ближайшего целого числа, однако желательно исключить значения i= 5, 7, 9...и т.д.

Уточняем значение литровой мощности по формуле

$$N_{e\pi} = \frac{N_{eH}}{V_h} \tag{5}$$

Определяем плотность воздуха ρ_k , требуемую для реализации $N_{\text{ел}}$

$$\rho_k \approx 10 \frac{N_{en} \tau \alpha}{\eta_e \eta_v n} \tag{6}$$

где η е - эффективный КПД;

 η_v - коэффициент наполнения;

τ - тактность двигателя;

 α – коэффициент избытка воздуха.

Коэффициент избытка воздуха α определяет состав горючей смеси. Его значение зависит от типа смесеобразования, условий воспламенения и сгорания топлива, а также от режима работы двигателя. Для номинального режима работы

карбюраторных бензиновых двигателей α =0,85...1,15; газовых с искровым зажиганием - 1,0...1,3; дизелей без наддува с непосредственным впрыском - 1,4...1,8; с наддувом - 1,6...2,0; вихрекамерных 1,3...1,5. Эффективный КПД η_e =0,25...0,30 - для карбюраторных двигателей и η_e =0,30...0,42 - для дизелей. Коэффициент наполнения η_v =0,8...0,9 .

Находим теоретически необходимое количество воздуха для сгорания 1 кг топлива

$$L'_0 = \frac{1}{0.23} [(8/3)C + 8H - O],$$
кг/кг топлива, (7)

где C, H и O - весовая доля соответствующих компонентов. Для дизельного топлива можно принять C=0.857; H=0.133; O=0.01

ИЛИ

$$L_0 = \frac{L_0'}{\mu_B}$$
 кмоль/кг топлива, (8)

где μ_B - масса 1 кмоля воздуха (μ_B =28,96 кг/кмоль).

Определяем количество свежего заряда

$$M_1 = \alpha L_0$$
 кмоль/кг топлива, (9)

Определяем химический коэффициент молекулярного изменения горючей смеси по формуле

$$\beta_0 = M_2 / M_1 \tag{10}$$

где M_2 - общее количество продуктов сгорания

$$M_2 = \alpha L_0 + H/4 + O/32$$
 кмоль/кг топлива. (11)

Находим давление в конце процесса наполнения (начале сжатия)

$$p_a = p_o - \Delta p_a$$
, M Πa (12)

где Δp_a - величина потери давления на впуске, МПа.

$$\Delta p_a = \left(\beta^2 + \xi_{en} \left(\frac{\omega_{en}}{2}\right) 10^{-6} \cdot p_k,$$
 (13)

где β - коэффициент затухания скорости движения заряда в рассматриваемом сечении цилиндра;

 $\xi_{\mbox{\tiny BII}}$ - коэффициент сопротивления впускной системы;

 $\omega_{\mbox{\scriptsize вп}}$ - средняя скорость движения заряда в наименьшем сечении впускной системы (как правило в клапане), м/с;

 p_k - плотность заряда на впуске, кг/м³.

Обычно принимают для дизелей ($\beta^2 + \xi_{\text{вп}}$)=2,5...3,5; для бензиновых двигателей и газовых ($\beta^2 + \xi_{\text{вп}}$)=3,0...4,0; $\omega_{\text{вп}}$ =65...90 м/с - для дизелей; $\omega_{\text{вп}}$ =85...130 - для бензиновых и газовых двигателей. Чем выше скорость поршня $C_{\text{п}}$, тем выше $\omega_{\text{вп}}$. Атмосферные условия, необходимые для последующих расчетов принимаются следующие: p_0 =0,1 МПа; T_0 =293 К. Давление остаточных

газов p_r =0,11...0,17 МПа в зависимости от сопротивления выпускного тракта: для дизелей без наддува p_r =0,11...0,12МПа; для дизелей с наддувом в зависимости от давления p_k наддува p_r =(0,12...0,17) МПа. Чем выше давление p_k тем выше p_r (p_r =(0,8...0,9) p_k), температура остаточных газов принимается из интервала T_r =750...900 К. При работе дизеля с турбонаддувом воздух поступает в цилиндры не из атмосферы, а из компрессора. Значения p_0 и T_0 в последующих расчетах принимаются равными давлению и температуре на выходе из компрессора p_k и T_k . При этом

$$T_k = T_0 \left(\frac{p_k}{p_0}\right)^{\frac{(n_k - 1)}{n_k}} \tag{14}$$

Находим коэффициент остаточных газов

$$\gamma_r = \frac{T_0 + \Delta T}{T_r} \cdot \frac{p_r}{\varepsilon \ p_a - p_r} \tag{15}$$

где ΔT - подогрев свежего заряда (принимается $\Delta T = 8...15$ K);

ε - степень сжатия.

Степень сжатия є определяется способом смесеобразования (внутреннее или внешнее), свойствами топлива, наличием наддува и т.п.

В двигателях с воспламенением от электрической искры є ограничивается по условию предупреждения явления детонации и выбор ее зависит от антидетонационных свойств применяемого топлива:

Октановое число

топлива	7376	7780	8190	91100	более 100
ε	6,67	7,17,5	7,68,5	8,69,5	до 12

Необходимо иметь в виду, что повышение степени сжатия увеличивает термический КПД рабочего цикла двигателя и, как следствие - улучшает экономичность, однако одновременно с увеличением є необходимо применять более дорогое топливо с большим октановым числом.

Для дизелей значение степени сжатия рекомендуется выбирать в следующих пределах: дизели с непосредственным впрыском без наддува $\varepsilon=16...23$; с наддувом $\varepsilon=20...25$; вихрекамерные дизели $\varepsilon=16...21$. Для дизелей увеличение ε также способствует повышению термического КПД, но с другой стороны увеличению нагрузки на детали КШМ, уменьшению механического КПД.

Находим температуру заряда в конце процесса впуска

$$T_a = \frac{T_0 + \Delta T + \gamma_r \cdot T_r}{1 + \gamma_r}, \text{ K.}$$
 (16)

Находим коэффициент наполнения

$$\eta_V = \frac{T_0}{T_0 + \Delta T} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{1}{p_0} \left(\varepsilon \ p_a - p_r \right) \tag{17}$$

Определяем давление в конце сжатия

$$p_c = p_a \cdot \varepsilon^{n_1}; \tag{18}$$

где n_1 - показатель политропы сжатия, который для автотракторных двигателей находится в пределах n_1 =1,34...1,38, или вычисляется по формуле В.А. Петрова

$$n_1 = 1,41 - 100/n_H,$$
 (19)

Определяем температуру заряда в конце сжатия

$$T_c = T_a \cdot \varepsilon^{n_1 - 1},$$
 (20)
 $T_c = 317 \cdot 16^{1,36-1} = 860,1 \text{ K}.$

Находим среднюю мольная теплоемкость свежего заряда

$$mC_v = 20.16 + 1.738 \cdot 10^{-3} T_c$$
 (20)

 $mC_v=20,16+1,738\cdot860,1\cdot10^{-3}=21,65$ Дж/(моль·град)

Находим среднюю мольную теплоемкость продуктов сгорания

$$mC_p=8,314+(20,1+0,921/\alpha)+(1,38/\alpha+15,49)\cdot 10^{-4}T_z$$
.

Принимаем значение степени повышения давления при сгорании и коэффициента использования теплоты. Тогда, подставляя полученные значения в уравнение сгорания топлива, которое для четырехтактного дизеля имеет вид, определим температуру $T_{\rm z}$

$$(mC_v + 8,314\lambda_p) \cdot T_c + \frac{\xi H_{\dot{E}}}{\alpha L_0 (1 + \gamma_r)} = \beta_0 \cdot mC_p \cdot T_z, \tag{21}$$

где mC_v - средняя мольная теплоемкость воздуха при постоянном объеме, $\kappa Д ж/(\kappa моль \cdot град);$

 mC_p - средняя мольная теплоемкость продуктов сгорания при постоянном давлении, кДж/(кмоль·град);

 ξ - коэффициент использования теплоты;

 H_u - низшая теплота сгорания топлива (для дизельного топлива H_u =42500 кДж/кг).

У четырехтактных дизелей коэффициент использования теплоты ξ =0,7...0,9. Более низкие значения коэффициента ξ соответствуют быстроходным дизелям с неразделенной камерой.

Находим максимальное давление в цилиндре в конце сжатия

$$p_z = \lambda_p \cdot p_c \tag{22}$$

где λ_p - степени повышения давления при сгорании.

У дизелей с предкамерным и вихрекамерным смесеобразованием λ_p =1,5...1.8; при непосредственном впрыске в неразделенную камеру λ_p =1,8...2,2. Чем ниже коэффициент избытка воздуха α , тем выше λ_p .

Определяем степень предварительного расширения

$$\rho = \frac{\beta_0}{\lambda_p} \cdot \frac{T_z}{T_c}.$$
 (23)

Определяем степень последующего расширения

$$\delta = \varepsilon / \rho$$
 (24)

Определяем давление газов в конце процесса расширения

$$p_b = p_z / \delta^{n_2} \tag{25}$$

где n_2 – показатель политропы расширения.

У дизелей n_2 =1,18...1,28. Чем выше коэффициент использования теплоты ξ , тем ниже n_2 .

Температуру газов в конце расширения определяем по формуле

$$T_b = \frac{T_z}{\delta^{n_2 - 1}}. (26)$$

После определения параметров в конце расширения выполняется оценка правильности выбора значения температуры отработавших газов, сделанной в начале теплового расчета, по формуле

$$T_r' = \frac{T_b}{\sqrt[3]{p_b/p_r}}. (27)$$

Определяем относительную погрешность

$$\Delta T = \frac{T_r - T_r'}{T_r} \cdot 100\% .$$

Полученное значение температуры T_r , принятое в начале расчета и вычисленное по формуле (27) не должны отличаться более, чем на 5%, в противном случае тепловой расчет следует уточнить, приняв в начале другое значение температуры T_r .

Расчетно-графическое задание 2часть

Находим индикаторные параметры рабочего цикла.

Находим теоретическое среднее индикаторное давление

$$p_{i}' = \frac{p_{c}}{\varepsilon - 1} \left[\lambda (\rho - 1) + \frac{\lambda_{\rho}}{n_{2} - 1} \left(1 - \frac{1}{\delta^{n_{2} - 1}} \right) - \frac{1}{n_{1} - 1} \left(1 - \frac{1}{\varepsilon^{n_{1} - 1}} \right) \right]$$
(28)

Среднее индикаторное давление для дизелей

$$p_i = p_i^1 \cdot \varphi_{\hat{k}} \tag{29}$$

где $\phi_{\text{И}}$ – коэффициент полноты диаграммы, $\phi_{\text{И}}$ =0,95

Находим индикаторный КПД для дизелей

$$\eta_i = \frac{p_i \cdot L_o' \cdot \alpha}{H_{\dot{E}} \cdot \rho_K \cdot \eta_V} \tag{30}$$

Находим индикаторный удельный расход топлива для дизелей

$$g_i = \frac{3600}{H_{\dot{k}} \cdot \eta_i} \tag{31}$$

Находим эффективные показатели двигателя

Среднее давление механических потерь будет равно

$$p_{\rm M} = 0.089 + 0.0118 v_{\rm n.cp} \tag{32}$$

где $v_{\text{п.ср}}$ –средняя скорость поршня, предварительно принимаем $v_{\text{п.ср}}$ =10,2 м/с.

Среднее эффективное давление будет равно

$$p_e = p_i - p_M \tag{33}$$

Находим механический КПД

$$\eta_{\scriptscriptstyle M} = \frac{p_{\scriptscriptstyle e}}{p_{\scriptscriptstyle i}} \tag{34}$$

Находим эффективный КПД и эффективный удельный расход топлива

$$\eta_e = \eta_i \eta_M \tag{35}$$

$$g_e = \frac{3600}{H_{\dot{E}} \cdot \eta_e} \tag{36}$$

Находим основные параметры цилиндра и двигателя

Литраж двигателя будет равен

$$V_{n}=30\tau N_{e}/(p_{e}\eta_{e}) \tag{37}$$

Рабочий объем цилиндра

$$V_{h} = V_{\pi}/i \tag{38}$$

По принятым значениям D и S уточняем основные параметры и показатели двигателя

$$V_{\pi} = \pi D^2 \operatorname{Si}/(4 \cdot 10^6)$$
 (39)

$$F_{n}=\pi D^{2}/4 \tag{40}$$

$$v_{\text{n.cp.}} = \text{Sn}/(3 \cdot 10^4)$$
 (41)

$$N_e = p_e V_{\pi} n/(30\tau)$$
 (42)

$$M_e = 3 \cdot 10^4 N_e / (\pi n) \tag{43}$$

10

$$G_e = N_e g_e \tag{44}$$

$$N_{\pi} = N_{e} / V_{\pi} \tag{45}$$

Построим индикаторную диаграмму двигателя

Индикаторная диаграмма двигателя внутреннего сгорания строится с использованием данных расчета рабочего процесса. При построении диаграммы ее масштабы рекомендуется выбирать с таким расчетом, чтобы получить высоту равной 1.2 - 1.7 ее основания. В начале построения на оси абсцисс откладывается отрезок AB, соответствующий рабочему объему цилиндра, а по величине равный ходу поршня в масштабе M_s , который в зависимости от величины хода поршня может быть принят 1:1,1,5:1или 2:1.

Отрезок ОА(мм), соответствующий объему камеры сгорания

$$OA = AB/(\varepsilon - 1) \tag{45}$$

$$AB=S/M_s \tag{46}$$

При построении диаграммы рекомендуется выбирать масштабы давлений M_p =0,02, 0,025, 0,04, 0,05, 0,07-0,10 Мпа в мм.

По данным теплового расчета на диаграмме откладывают в выбранном масштабе величины давлений в характерных точках: a, c, z, z, b, r.

Находим максимальную высоту диаграммы (точки z и z) и положение точки z по оси абсцисс.

$$p_z/M_p (47)$$

$$z'z = OA(\rho-1) \tag{48}$$

Находим ординаты характерных точек

$$p_o/M_p$$
; p_r/M_p ; p_c/M_p ; p_k/M_p ; p_a/M_p ; p_b/M_p (49)

Построение политроп сжатия и расширения проводится графическим методом [Л5,стр 97]:

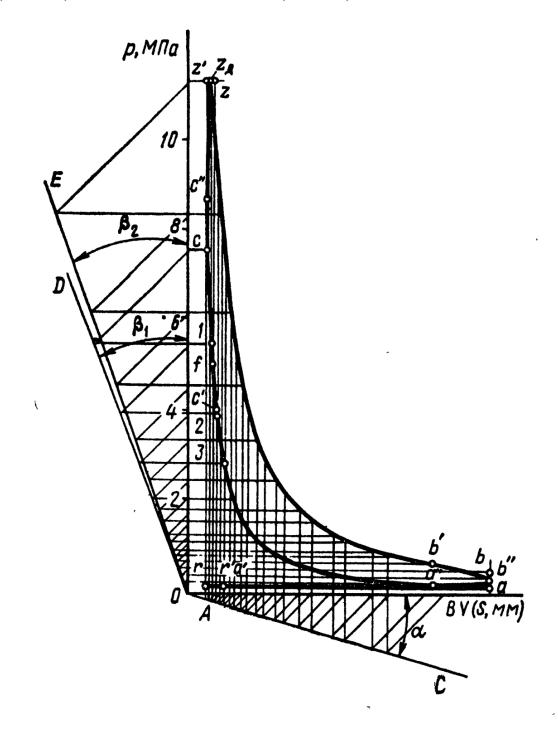
- а) для луча ОС принимаем угол α =15°;
- б) проводят луч OD по углом β_1

$$tg\beta_1 = (1 + tg\alpha)^{n_1} - 1;$$
 (50)

в) проводят луч ОЕ по углом β_2

$$tg\beta_2 = (1+tg\alpha)^{n^2} - 1;$$
 (51)

г) используя лучи OD и OC, строим политропу сжатия, начиная с точки с;


д) используя лучи ОЕ и ОС, строим политропу расширения, начиная с точки z.

Находим теоретическое среднее индикаторное давление и сравниваем его с полученным ранее (28)

$$p'_{i}=M_{p} F'/AB \tag{52}$$

Скругление индикаторной диаграммы

Учитывая достаточную быстроходность рассчитываемого дизеля ориентировочно устанавливаются следующие фазы газораспределения: впуск — начало(точка r') 25° до в.м.т. и окончание (точка а") - 60° после н.м.т.; выпуск— начало(точка b') 60° до н.м.т. и окончание (точка а') - 25° после в.м.т.

Рисунок 1- Индикаторная диаграмма

С учетом быстроходности дизеля принимается угол опережения впрыска 20° (точка с') и продолжительность периода задержки воспламенения $\Delta \phi_1 = 8^{\circ}$ (точка f).

В соответствии с принятыми фазами газораспределения и углом опережения впрыска определяется положение точек b', r', a', a", c' и f по формуле для перемещения поршня

$$AX = (AB/2)[(1-\cos\varphi) + (\lambda/4)(1-\cos2\varphi)]$$
 (53)

где λ — отношение кривошипа к длине шатуна, при построении индикаторной диаграммы ориентировочно устанавливаем, λ =0,27. Результаты расчета ординат точек b', r', a', a", c' и f представим в виде таблицы.

Положение точки с" определяем из выражения

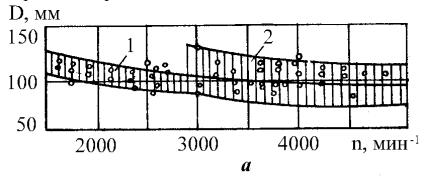
$$p_{c''} = (1,15 \div 1,25)pc$$
 $p_{c''}/M_p$
(54)

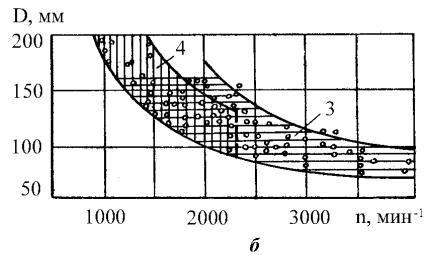
Точка $z_{\rm J}$ лежит на линии z'z ориентировочно вблизи точки z. Нарастание давления от точки $\,$ с" до точки $z_{\rm J}$ составит

$$\Delta p_{c"z} = p_z - p_{c"}$$
 или (55)

$$\Delta p_{c"z}/10$$

Где 10- положение точки $z_{\rm I}$ по оси абсцисс, град.


Соединив плавными кривыми точки r c a', c' c f u c'' u далее c $z_{Д}$ u кривой расширения b' c b'' b u далее c r' u r, получим скругленную индикаторную диаграмму r a' a c' f c'' $z_{Д}$ b' b'' r .


4 Пример расчета

Расчетно-графическое задание 1 часть

Пример: Рассчитать рабочий цикл четырехтактного дизеля. Эффективная мощность N_{eH} =115 кВт при частоте вращения коленчатого вала n_{H} =2000 мин⁻¹. Отношение S/D=0,95.

Находим диаметр цилиндра. Из рисунка 1.1 видно, что диапазон возможного изменения диаметра цилиндра -100...175 мм.

a — для карбюраторных двигателей малых грузовых автомобилей и тракторов (1), карбюраторных двигателей крупных грузовых автомобилей (2);

 δ – автотракторных дизелей (3), транспортных и стационарных дизелей (4).

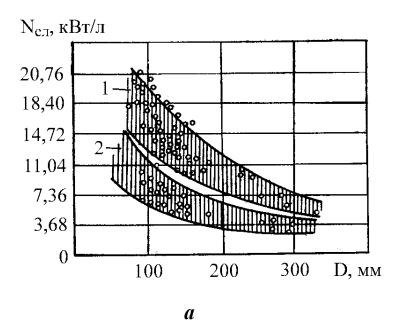
Рисунок 1.1- Диаметр цилиндра двигателя в зависимости от частоты вращения коленчатого вала

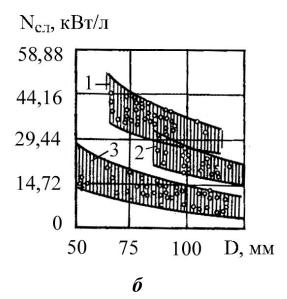
Выбираем D=130мм. Назначив стандартный D (в мм, округленный на 0 или 5 - для дизелей, или до ближайшего четного числа - для карбюраторных двигателей), по соответствующему соотношению S/D определяют ход поршня S

$$S = D \cdot (S/D), \, \mathbf{M} \tag{1}$$

где S - ход поршня;

D — диаметр цилиндра.


$$S$$
=0,13·0,95≈0,125 м.


Ориентировочная средняя скорость поршня вычисляется по формуле

$$\upsilon_{\tilde{r},\tilde{n}\tilde{o}} = \frac{S \cdot n_{\tilde{t}}}{30}, \text{ M/c}$$

$$\upsilon_{\tilde{r},\tilde{n}\tilde{o}} = \frac{0,125 \cdot 2000}{30} = 8,33 \text{ M/c}$$
(2)

По рисунку 1.2 выбираем значение литровой мощности, N_{en} .

a – автомобильные без наддува (1), тракторные (2);

 δ — карбюраторные легковые серийные (1), карбюраторные грузовые (2), карбюраторные стационарные (3).

Рисунок 1.2 - Зависимости между диаметром цилиндров и литровой мощностью двигателей

По принятому диаметру цилиндра устанавливают пределы изменения литровой мощности двигателя $N_{e_{7}}$ и находим цилиндровую мощность.

Выбираем $N_{e \pi} \! = \! 9$ кВт/л. Находим цилиндровую мощность, N_{u} .

$$N_{u} = N_{en} \cdot V_{h} = N_{en} \frac{\pi \cdot D^{3}}{4} \cdot \frac{S}{D}, \text{ kBT}$$
(3)

где V_h - рабочий объем цилиндра, л;

D и S - в дм.

$$N_{y} = 9 \frac{3,14 \cdot 1,3^{3}}{4} \cdot 0,95 = 15,52 \text{ kBt}.$$

При заданной эффективной мощности двигателя $N_{e n}$ требуемое число цилиндров определяется по формуле

$$i=N_{eH}/N_u \tag{4}$$

Полученное значение i округляют до ближайшего целого числа, однако желательно исключить значения i=5,7,9...и т.д.

$$i = \frac{115}{15.52} = 7.4$$
.

Принимаем число цилиндров i=8.

Уточняем значение литровой мощности по формуле

$$N_{e\pi} = \frac{N_{eH}}{V_h} \tag{5}$$

$$N_{e\pi} = \frac{115 \cdot 4}{8 \cdot 3.14 \cdot 1.3^2 \cdot 1.25} = 8,67 \text{ kBt/m}.$$

Плотность воздуха ρ_k , требуемую для реализации N_{en} , определим по формуле

$$\rho_k \approx 10 \frac{N_{en} \tau \alpha}{\eta_e \eta_v n} \tag{6}$$

где η_e - эффективный КПД;

 η_{v} - коэффициент наполнения, η_{v} =0,8...0,9;

 τ - тактность двигателя;

 α – коэффициент избытка воздуха.

Коэффициент избытка воздуха α определяет состав горючей смеси. Его значение зависит от типа смесеобразования, условий воспламенения и сгорания топлива, а также от режима работы двигателя. Для номинального режима работы карбюраторных бензиновых двигателей α =0,85...1,15; газовых с искровым зажиганием - 1,0...1,3; дизелей без наддува с непосредственным впрыском - 1,4...1,8; с наддувом - 1,6...2,0; вихрекамерных 1,3...1,5. Предварительно приняв η_e =0,25...0,30 - для карбюраторных двигателей и η_e =0,30...0,42 - для дизелей, а также η_v =0,8...0,9 можно определить ρ_k .

$$\rho_k = 10 \frac{8,67 \cdot 4 \cdot 1,8}{0,35 \cdot 0,85 \cdot 2000} = 1,05 \text{ KeV/M}^3.$$

Учитывая, что при 293 К плотность воздуха ρ_0 =1,21 кг/м³, определяем, что наддув данного двигателя не требуется (ρ_k = ρ_0 , p_k = p_0 , T_k = T_0).

Находим теоретически необходимое количество воздуха для сгорания 1 кг топлива

$$L'_0 = \frac{1}{0.23} [(8/3)C + 8H - O], кг/кг топлива,$$
 (7)

где C, H и O - весовая доля соответствующих компонентов. Для дизельного топлива можно принять C=0,857; H=0,133; O=0,01

$$L_0' = \frac{1}{0.23} \left(\frac{8}{3} \cdot 0.857 + 8 \cdot 0.133 - 0.01 \right) = 14.52$$
 кг/кг топлива

ИЛИ

$$L_0 = \frac{L_0'}{\mu_B}$$
 кмоль/кг топлива, (8)

где $\mu_{\!\scriptscriptstyle B}$ - масса 1 кмоля воздуха ($\mu_{\!\scriptscriptstyle B}\!\!=\!\!28,\!96$ кг/кмоль).

$$L_0 = \frac{14,52}{28,96} = 0,501$$
.

Определяем количество свежего заряда

$$M_1$$
= αL_0 кмоль/кг топлива, (9) M_1 =1,8·0,501=0,902 кмоль/кг топлива.

Химический коэффициент молекулярного изменения горючей смеси определим по формуле

$$\beta_0 = M_2 / M_1 \tag{10}$$

где М₂ - общее количество продуктов сгорания

$$M_2 = \alpha L_0 + H/4 + O/32$$
 кмоль/кг топлива. (11)

$$\beta_0 = \frac{0.936}{0.902} = 1.037$$
.

Давление в конце процесса наполнения (начале сжатия) находим по формуле

$$p_a = p_o - \Delta p_a$$
, M Π a (12)

где Δp_a - величина потери давления на впуске, МПа.

$$\Delta p_a = \left(\beta^2 + \xi_{en}\right) \left(\frac{\omega_{en}}{2}\right) 10^{-6} \cdot p_k, \tag{13}$$

где β - коэффициент затухания скорости движения заряда в рассматриваемом сечении цилиндра;

 $\xi_{\it en}$ - коэффициент сопротивления впускной системы;

 ω_{sn} - средняя скорость движения заряда в наименьшем сечении впускной системы (как правило в клапане), м/с;

 p_k - плотность заряда на впуске, кг/м³.

Обычно принимают для дизелей ($\beta^2 + \xi_{en}$)=2,5...3,5; для бензиновых двигателей и газовых ($\beta^2 + \xi_{en}$)=3,0...4,0; ω_{en} =65...90 м/с - для дизелей; ω_{en} =85...130 - для бензиновых и газовых двигателей. Чем выше скорость поршня C_n , тем выше ω_{en} . Атмосферные условия, необходимые для последующих расчетов

принимаются следующие: p_0 =0,1 МПа; T_0 =293 К. Давление остаточных газов p_r =0,11...0,17 МПа в зависимости от сопротивления выпускного тракта: для дизелей без наддува p_r =0,11...0,12МПа; для дизелей с наддувом в зависимости от давления p_k наддува p_r =(0,12...0,17) МПа. Чем выше давление p_k тем выше p_r (p_r =(0,8...0,9) p_k), температура остаточных газов принимается из интервала T_r =750...900 К. При работе дизеля с турбонаддувом воздух поступает в цилиндры не из атмосферы, а из компрессора. Значения p_0 и p_0 и p_0 в последующих расчетах принимаются равными давлению и температуре на выходе из компрессора p_k и p_0 и p_0 на том

$$T_k = T_0 \left(\frac{p_k}{p_0}\right)^{\frac{(n_k - 1)}{n_k}} \tag{14}$$

$$p_a = 0.1 - 3 \cdot \frac{60^2}{2} \cdot 1.21 \cdot 10^{-6} = 0.0935 \text{ M}\Pi \text{a}.$$

Коэффициент остаточных газов находим по формуле

$$\gamma_r = \frac{T_0 + \Delta T}{T_r} \cdot \frac{p_r}{\varepsilon \ p_a - p_r} \tag{15}$$

где ΔT - подогрев свежего заряда (принимается $\Delta T = 8...15$ K);

 ε - степень сжатия.

Степень сжатия ε определяется способом смесеобразования (внутреннее или внешнее), свойствами топлива, наличием наддува и т.п.

В двигателях с воспламенением от электрической искры ε ограничивается по условию предупреждения явления детонации и выбор ее зависит от антидетонационных свойств применяемого топлива:

Октановое число

топлива 73...76 77...80 81..90 91..100 более 100
$$\varepsilon$$
 6,6...7 7,1...7,5 7,6...8,5 8,6...9,5 до 12

Необходимо иметь в виду, что повышение степени сжатия увеличивает термический КПД рабочего цикла двигателя и, как следствие - улучшает экономичность, однако одновременно с увеличением ε необходимо применять более дорогое топливо с большим октановым числом.

Для дизелей значение степени сжатия рекомендуется выбирать в следующих пределах: дизели с непосредственным впрыском без наддува ε =15...17; с наддувом ε =13,5...15; вихрекамерные дизели ε =17...20. Для дизелей увеличение ε также способствует повышению термического КПД, но с другой стороны увеличению нагрузки на детали КШМ, уменьшению механического КПД.

$$\gamma_r = \frac{293 + 10}{800} \cdot \frac{0,11}{16 \cdot 0,0935 - 0,11} = 0,03.$$

Температура заряда в конце процесса впуска определяется по формуле

$$T_a = \frac{T_0 + \Delta T + \gamma_r \cdot T_r}{1 + \gamma_r}, \text{ K.}$$
 (16)

$$T_a = \frac{293 + 10 + 0.03 \cdot 800}{1 + 0.03} = 317 \text{ K}.$$

Коэффициент наполнения находим по формуле

$$\eta_{V} = \frac{T_{0}}{T_{0} + \Delta T} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{1}{p_{0}} (\varepsilon \ p_{a} - p_{r})$$

$$\eta_{v} = \frac{293}{293 + 10} \cdot \frac{1}{16 - 1} \cdot \frac{1}{0.1} (16 \cdot 0.0935 - 0.11) = 0.89 .$$
(17)

Определяем давление в конце сжатия по формуле

$$p_c = p_a \cdot \varepsilon^{n_1}; \tag{18}$$

где n_1 - показатель политропы сжатия, который для автотракторных двигателей находится в пределах n_I =1,34...1,38, или вычисляется по формуле В.А. Петрова

$$n_1 = 1,41 - 100/n_n,$$
 (19)
 $p_c = 0,0935 \cdot 16^{1,36} = 4,06 \text{ M}\Pi a$

Определяем температура заряда в конце сжатия

$$T_c = T_a \cdot \varepsilon^{n_1 - 1},$$
 (20)
 $T_c = 317 \cdot 16^{1,36-1} = 860,1 \text{ K}.$

Находим средняя мольная теплоемкость свежего заряда

$$mC_v = 20,16+1,738\cdot10^{-3}T_c$$
 (20)

 $mC_v=20,16+1,738\cdot860,1\cdot10^{-3}=21,65$ Дж/(моль·град)

Находим среднюю мольную теплоемкость продуктов сгорания

$$mC_p=8,314+(20,1+0,921/\alpha)+(1,38/\alpha+15,49)\cdot 10^{-4}T_z$$
.

$$mC_P = 8,314 + \left(20,1 + \frac{0.921}{1.8}\right) + \left(\frac{13.8}{1.8} + 15.49\right) \cdot 10^{-4} \cdot T_z = 28.9 + 23.16 \cdot 10^{-4} T_z.$$

Примем значение степени повышения давления при сгорании λ_p =1,8 и коэффициент использования теплоты ξ =0,75. Тогда, подставляя полученные значения в уравнение сгорания топлива , которое для четырехтактного дизеля имеет вид, определим температуру T_z

$$(mC_v + 8,314\lambda_p) \cdot T_c + \frac{\xi H_u}{\alpha L_0 (1 + \gamma_r)} = \beta_0 \cdot mC_p \cdot T_z, \tag{21}$$

получим

$$(21,65+8,314\cdot1,8)\cdot860,1+\frac{0,75\cdot42500}{1,8\cdot0,501(1+0,03)}=1,037(28,9+23,16\cdot10^{-4}T_z)T_z$$

или

$$24,02 \cdot 10^{-4} T_z^2 + 29,97 T_z - 65809,2 = 0.$$

Решив это квадратное уравнение, находим T_z =2076 К.

Находим максимальное давление в цилиндре в конце сжатия

$$p_z = \lambda_p \cdot p_c. \tag{22}$$

где λ_p - степени повышения давления при сгорании.

У дизелей с предкамерным и вихрекамерным смесеобразованием λ_p =1,5...1.8; при непосредственном впрыске в неразделенную камеру λ_p =1,8...2,2. Чем ниже коэффициент избытка воздуха α , тем выше λ_p .

$$p_z=1,8.4,06=7,31 \text{ M}\Pi a.$$

Определяем степень предварительного расширения

$$\rho = \frac{\beta_0}{\lambda_p} \cdot \frac{T_z}{T_c}.$$

$$\rho = \frac{1,037}{1,8} \cdot \frac{2076}{860,1} = 1,39.$$
(23)

Определяем степень последующего расширения

$$\delta = \varepsilon/\rho$$

$$\delta = \frac{16}{1,39} = 11,51.$$
(24)

Давление газов в конце процесса расширения определяем по формуле

$$p_b = p_z / \delta^{n_2}$$

$$p_b = \frac{7.31}{11.51^{1.23}} = 0.36 \text{ M}\Pi \text{a.}$$
(25)

где n_2 — показатель политропы расширения.

У дизелей n_2 =1,18...1,28. Чем выше коэффициент использования теплоты ξ , тем ниже n_2 .

Температуру газов в конце расширения определяем по формуле

$$T_b = \frac{T_z}{\delta^{n_2 - 1}}.$$

$$T_b = \frac{2076}{11.51^{1,23 - 1}} = 1183.5 \text{ K}.$$
(26)

После определения параметров в конце расширения выполняется оценка правильности выбора значения температуры отработавших газов, сделанной в начале теплового расчета, по формуле

$$T_r = \frac{T_b}{\sqrt[3]{p_b/p_r}}.$$

$$T_r = \frac{1183.5}{\sqrt[3]{\frac{0.36}{0.11}}} = 797 \text{ K}.$$
(27)

Определяем относительную погрешность

$$\Delta T = \frac{800 - 797}{800} \cdot 100\% = 0.38\%.$$

Полученное значение температуры T_r , принятое в начале расчета и вычисленное по формуле (27) не должны отличаться более, чем на 5%, в противном случае тепловой расчет следует уточнить, приняв в начале другое значение температуры T_r . Таким образом, достоверность расчета рабочего цикла обеспечена.

Расчетно-графическое задание 2часть

Пример: Рассчитать индикаторные параметры рабочего цикла дизеля. Эффективная мощность N_{eH} =115 кВт при частоте вращения коленчатого вала n_H =2000 мин⁻¹. Отношение S/D=0,95.

Находим индикаторные параметры рабочего цикла.

Находим теоретическое среднее индикаторное давление

$$p_i' = \frac{p_c}{\varepsilon - 1} \left[\lambda \left(\rho - 1 \right) + \frac{\lambda \rho}{n_2 - 1} \left(1 - \frac{1}{\delta^{n_2 - 1}} \right) - \frac{1}{n_1 - 1} \left(1 - \frac{1}{\varepsilon^{n_1 - 1}} \right) \right]$$

$$(28)$$

$$p_i' = \frac{4,06}{16-1} \left[1,8(1,39-1) + \frac{1,8 \cdot 1,39}{1,23-1} \left(1 - \frac{1}{11,51^{1,23-1}} \right) - \frac{1}{1,36-1} \left(1 - \frac{1}{16^{1,36-1}} \right) \right] = 0,954 \grave{I} \ddot{I} \grave{a}$$

Среднее индикаторное давление для дизелей

$$p_i = p_i' \cdot \varphi_{\dot{E}} \tag{29}$$

$$p_i = 0.95 \cdot 0.95 = 0.906 \ddot{I}\ddot{a}$$

где $\phi_{\text{И}}$ – коэффициент полноты диаграммы, $\phi_{\text{И}}$ =0,95

Находим индикаторный КПД для дизелей

$$\eta_i = \frac{p_i \cdot L_o \cdot \alpha}{H_{\dot{E}} \cdot \rho_K \cdot \eta_V} \tag{30}$$

где $H_{\it H}$ - низшая теплота сгорания топлива, принимаем $H_{\it H}$ = 42,44МДж/кг

$$\eta_i = \frac{0,906 \cdot 14,5 \cdot 1,8}{42,44 \cdot 1,05 \cdot 0,89} = 0,596$$

Находим индикаторный удельный расход топлива для дизелей

$$g_i = \frac{3600}{H_{\dot{E}} \cdot \eta_i} \tag{31}$$

$$g_i = \frac{3600}{42,44 \cdot 0,596} = 142,32\tilde{a}/\hat{e}\hat{A}\hat{o} \div$$

Находим эффективные показатели двигателя

Среднее давление механических потерь будет равно

$$p_{\rm M} = 0.089 + 0.0118 \nu_{\rm n.cp}$$
 (32)

где $\nu_{\text{п.сp}}$ –средняя скорость поршня, предварительно принимаем $\nu_{\text{п.сp}} = 8,5$ м/с

$$p_{M}=0.089+0.0118\cdot 8.5=0.189M\Pi a$$

Среднее эффективное давление будет равно

$$p_e = p_i - p_M$$
 (33)

 p_e =0,906 – 0,189=0,717 M Π a

Находим механический КПД

$$\eta_{M} = \frac{p_{e}}{p_{i}}.$$

$$\eta_{M} = \frac{0.717}{0.906} = 0.791$$
(34)

Находим эффективный КПД и эффективный удельный расход топлива

$$\eta_e = \eta_i \eta_M \tag{35}$$

$$\eta_e = 0.596 \cdot 0.791 = 0.471$$

$$g_{e} = \frac{3600}{H_{\dot{E}} \cdot \eta_{e}}$$

$$g_{e} = \frac{3600}{42.44 \cdot 0.471} = 180,1\tilde{a}/\hat{e}\hat{A}\hat{o} \cdot \div$$
(36)

Находим основные параметры цилиндра и двигателя

Литраж двигателя будет равен

$$V_{\pi} = 30\tau N_e / (p_e \eta_e) \tag{37}$$

Рабочий объем цилиндра

$$V_h = V_{\pi}/i \tag{38}$$

По принятым значениям D и S(KP1) уточняем основные параметры и показатели двигателя

$$V_{\pi} = \pi D^2 \operatorname{Si}/(4 \cdot 10^6) \tag{39}$$

$$V_{\pi}=3,14\cdot130^2\cdot125\cdot8/(4\cdot10^6)=13,27\pi$$

$$F_{\pi}=\pi D^2/4$$
(40)

$$F_n=3,14\cdot130^2/4=13267$$
mm²=132,67cm²

$$v_{\text{n.cp.}} = \text{Sn}/(3 \cdot 10^4)$$
 (41)

$$v_{\text{n.cp.}} = 125 \cdot 2000/(3 \cdot 10^4) = 8,33 \text{ m/c},$$

что достаточно близко к ранее принятому значению $\nu_{\text{п.ср.}}=8,5\text{м/c}$ (ошибка $\approx 2\%$) $N_{\rm e}=p_{\rm e}~V_{\scriptscriptstyle \rm T}~n/(30\tau)$

$$N_e = 0.717 \cdot 13,27 \cdot 2000/(30.4) = 158,58 \text{kBt}$$

$$M_e = 3 \cdot 10^4 \, N_e / (\pi n) \tag{43}$$

$$M_e = 3.10^4 \cdot 158,58/(3,14.2000) = 757,55$$

$$G_e = N_e g_e \tag{44}$$

 $G_e = 158,58 \cdot 0,1801 = 28,56 \text{ кг/ч}$

$$N_{\pi} = N_{e}/V_{\pi} \tag{45}$$

$$N_{\pi}=158,58/13,27=11,95 \text{ кBт/дм}^3$$

Построим индикаторную диаграмму двигателя

Индикаторная диаграмма двигателя внутреннего сгорания строится с использованием данных расчета рабочего процесса. При построении диаграммы ее масштабы рекомендуется выбирать с таким расчетом, чтобы получить высоту равной 1.2 - 1.7 ее основания. В начале построения на оси абсцисс откладывается отрезок AB, соответствующий рабочему объему цилиндра, а по величине равный ходу поршня в масштабе M_s , который в зависимости от величины хода поршня может быть принят 1:1,1,5:1или 2:1. Принимаем $M_s=1$ мм/мм

Отрезок ОА(мм), соответствующий объему камеры сгорания

$$OA = AB/(\varepsilon - 1) \tag{45}$$

$$AB=S/M_s$$
 (46)

AB=125/1=125MM

$$OA=125/(16-1)=8,33$$
MM

При построении диаграммы рекомендуется выбирать масштабы давлений $\rm M_p{=}0,02,\,0,025,\,0,04,\,0,05,\,0,07{-}0,10$ Мпа в мм. Принимаем $\rm M_s{=}0,05$ МПа/мм

По данным теплового расчета на диаграмме откладывают в выбранном масштабе величины давлений в характерных точках: a, c, z, z, b, r.

Находим максимальную высоту диаграммы (точки z и z) и положение точки z по оси абсписс.

$$p_z/M_p$$
 (47)

$$p_z/M_p = 7.31/0.05 = 146.2 \text{MM}$$

$$zz = OA(\rho-1)$$
 (48)

Находим ординаты характерных точек

$$p_{o}/M_{p}; p_{r}/M_{p}; p_{c}/M_{p}; p_{a}/M_{p}; p_{b}/M_{p}$$
 (49)

 $p_{o}/\,M_{p}\!=\!0,\!1/0,\!05\!=\!2\text{mm};\;p_{r}/\,M_{p}=\!0,\!11/0,\!05\!=\!2,\!2\text{mm};\;\;p_{c}/\,M_{p}=\!4,\!06/0,\!05\!=\!81,\!2\text{mm}\;;$

$$p_a/M_p = 0.0935/0.05 = 1.87 \text{mm}; p_b/M_p = 0.36/0.05 = 7.2 \text{mm}$$

Построение политроп сжатия и расширения проводится графическим методом[Л5,стр 97]:

- а) для луча ОС принимаем угол α =15°;
- б) проводят луч OD по углом β_1

$$tg\beta_1 = (1+tg\alpha)^{n_1} - 1;$$
 (50)

$$tg\beta_1 = (1+tg15)^{1,36} - 1 = 0,381; \beta_1 = 20^{\circ}51'30''$$

в) проводят луч ОЕ по углом β_2

$$tg\beta_2 = (1+tg\alpha)^{n^2} -1;$$
 (51)

$$tg\beta_2 = (1+tg15)^{1,23} - 1 = 0,339; \beta_2 = 18^{\circ}43'55"$$

- г) используя лучи OD и OC, строим политропу сжатия, начиная с точки с;
- д) используя лучи ОЕ и ОС, строим политропу расширения, начиная с точки z.

Находим теоретическое среднее индикаторное давление и сравниваем его с полученным ранее (28)

$$p'_{i}=M_{p} F'/AB \tag{52}$$

$$p'_{i}=0.05 \cdot 2415/125=0.966$$

Скругление индикаторной диаграммы

Учитывая достаточную быстроходность рассчитываемого дизеля ориентировочно устанавливаются следующие фазы газораспределения: впуск — начало(точка r') 25° до в.м.т. и окончание (точка а") - 60° после н.м.т.; выпуск— начало(точка b') 60° до н.м.т. и окончание (точка а') - 25° после в.м.т.

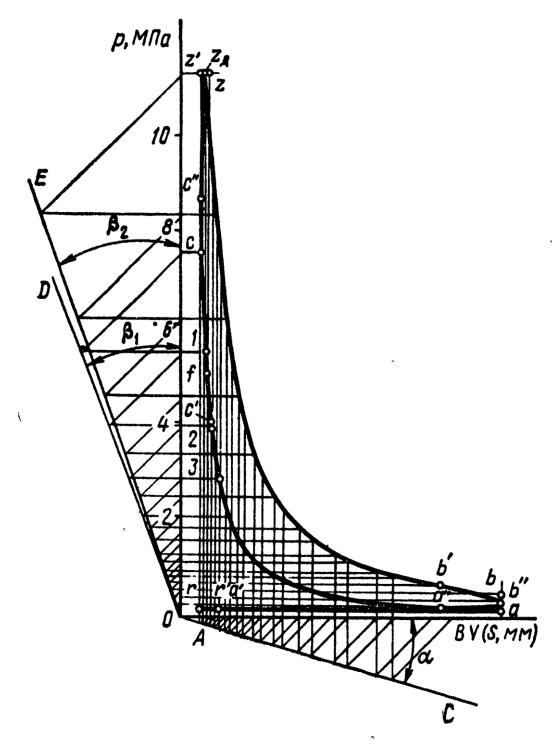


Рисунок 1- Индикаторная диаграмма

С учетом быстроходности дизеля принимается угол опережения впрыска 20° (точка с') и продолжительность периода задержки воспламенения $\Delta \phi_1 = 8^{\circ}$ (точка f).

В соответствии с принятыми фазами газораспределения и углом опережения впрыска определяется положение точек b', r', a', a", c' и f по формуле для перемещения поршня

$$AX = (AB/2)[(1-\cos\varphi) + (\lambda/4)(1-\cos2\varphi)]$$
 (53)

где λ — отношение кривошипа к длине шатуна, при построении индикаторной диаграммы ориентировочно устанавливаем, λ =0,27. Результаты расчета ординат точек b', r', a', a", c' и f представим в виде таблицы.

Обозначение точек	Положение точек	Положение точек				
b'	60° до н.м.т.	120	1,601	64,0		
r'	25° до в.м.т.	25	0,122	4,9		
ď	25° после в.м.т.	25	0,122	4,9		
a"	60° после н.м.т.	120	1,601	64,0		
c'	20° до в.м.т.	20	0,076	3,0		
f	(20-8°) до в.м.т.	12	0,038	1,5		

Положение точки с" определяем из выражения

$$p_{c"} = (1,15 \div 1,25)p_{c}$$

$$p_{c"}/M_{p}$$

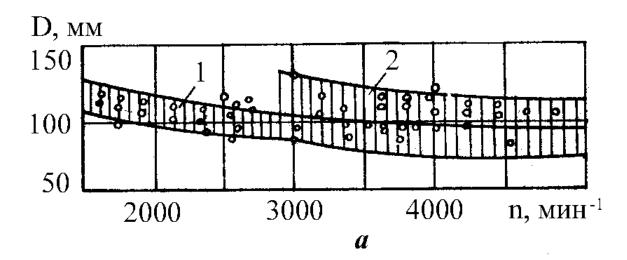
$$p_{c"} = 1,15 \cdot 4,06 = 4,669M\Pi a$$

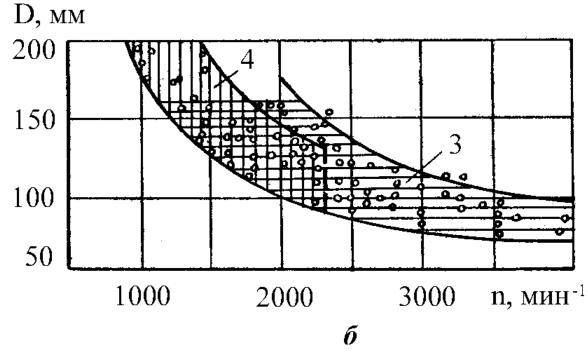
$$p_{c"}/M_{p} = 4,669/0,05 = 93,38 \text{MM}$$
(54)

Точка $z_{\text{Д}}$ лежит на линии z'z ориентировочно вблизи точки z. Нарастание давления от точки $\,$ с" до точки $z_{\text{Д}}$ составит

$$\Delta p_{c"z} = p_z - p_{c"}$$
 или (55)

$$\begin{array}{c} \Delta p_{\ c"z}\!/10 \\ \Delta p_{\ c"z}\!\!=\!7,\!31-4,\!669\!\!=\!\!2,\!641 M\Pi a \end{array}$$

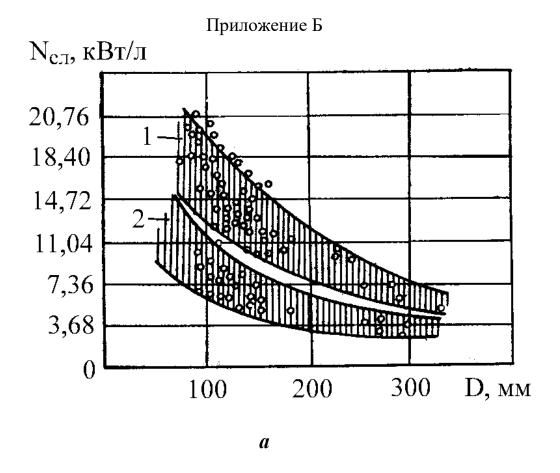

$$\Delta p_{c"z}/10=2,641/10=0,264$$
МПА/град.п.к.в.

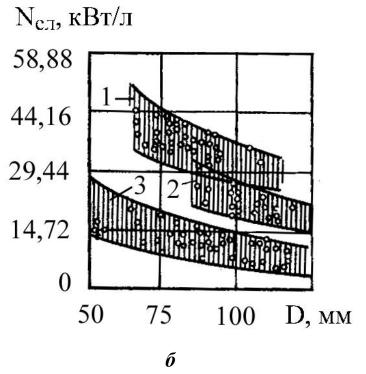

Где 10- положение точки $z_{\text{Д}}$ по оси абсцисс, град.

Соединив плавными кривыми точки r c a', c' c f u c" u далее c $z_{Д}$ u кривой расширения b' c b" b u далее c r' u r, получим скругленную индикаторную диаграмму r a' a c' f c" $z_{Д}$ b' b" r .

Список использованных источников

- 1 Архангельский В.М., Вихерт М.М. и др. Автомобильные двигатели. М.: Машиностроение, 1977.
- 2 Двигатель внутреннего сгорания: Динамика и конструирование / В. Н. Луканин, И. В. Алексеев, М. Г. Шатров и др.; Под ред. В. Н. Луканина и М. Г. Шатрова.- М.: Выс. школа, 2005. 400 с.
- 3 Железко Б.Е., Адамов В.М. и др. Расчет и конструирование автомобильных и тракторных двигателей. М.: Вышэйшая школа, 1987.
- 4 Николаенко А.В. Теория, конструкция и расчет автотракторных двигателей. М.: Колос, 1984.
- 5 Расчет автомобильных и тракторных двигателей/ А. И. Колчин, В. П. Демидов.- М.: Выс. школа, 2003. 496 с.
- 6 Тракторные дизели: Справочник. Под общей редакцией Б.А. Взорова. М.: Машиностроение, 1981.





a — для карбюраторных двигателей малых грузовых автомобилей и тракторов (1), карбюраторных двигателей крупных грузовых автомобилей (2);

 δ — автотракторных дизелей (3), транспортных и стационарных дизелей (4).

Рисунок 1.1- Диаметр цилиндра двигателя в зависимости от частоты вращения коленчатого вала

a – автомобильные без наддува (1), тракторные (2);

 δ — карбюраторные легковые серийные (1), карбюраторные грузовые (2), карбюраторные стационарные (3).

Рисунок 1.2 - Зависимости между диаметром цилиндров и литровой мощностью двигателей

Таблица 3.6

Температура, °С	Средняя мольная теплоемкость отдельных газов при постоянном объеме, кДж/(кмоль град)									
	Воздух	O ₂	N ₂	H ₂	CO	CO ₂	H ₂ O			
0	20,759	20,960	20,705	20,303	20,809·	27,546	25,185			
100	20,839	21,224	20,734	20,621	20,864	29,799	25,428			
200	20,985	21,617	20,801	20,759	20,989	31,746	25,804			
300	21,207	22,086	20,973	20,809	21,203	33,442	26,261			
400	21,475	22,564	21,186	20,872	21,475	34,936	26,776			
500 '	21,781	23,020	21,450	20,935	21,785	36,259	27,316			
600	22,091	23,447	21,731	21,002	22,112	37,440	27,881			
700	22,409	23,837	22,028	21,094	22,438	38,499	28,476			
800	22,714	24,188	22,321	21,203	22,756	39,450	29,079			
900	23,008	24,511	22,610	21,333	23,062	40,304	29,694			
1000	23,284	24,804	22,882	21,475	23,351	41,079	30,306			
1100	23,548	25,072	23,142	21,630	23,623	41,786	30,913			
1200	23,795	25,319	23,393	21,793	23,878	42,427	31,511			
1300	24,029	25,549	23,627	21,973	24,113	43,009	32,093			
1400	24,251	25,763	23,849	22,153	24,339	43,545	32,663			
1500	24,460	25,968	24,059	22,333	24,544	44,035	33,211			
1600	24,653	26,160	24,251	22,518	24,737	44,487	33,743			
- 1700	24,837	26,345	24,435	22,698	24,917	44,906	34,262			
1 800 -	25,005	26,520	24,603	22,878	25,089	45,291	34,756			
1900	25,168	26,692	24,766	23,058	25,248	45,647	35,225			
2000	25,327	26,855	24,917	23,234	25,394	45,977	35,682			
2100	25,474	27,015	25,063	23,410	25,537	46,283	36,121			
2200	25,612	27,169	25,202	23,577	25,666	46,568	36,540			
2300	25,746	27,320	25,327	23,744	25,792	46,832	36,942			
2400	25,871	27,471	25,449	23,908	25,909	47,079	37,331			
2500	25,993	27,613	25,562	24,071	26,022	47,305	37,704			
2600*	26,120	27,753	25,672	24,234	26,120	47,515	38,060			
2700*	26,250	27,890	25,780	24,395	26,212	47,710	38,395			
2800*	26,370	28,020	25,885	24,550	26,300	47,890	38,705			

^{*} Теплоемкость подсчитана методом интерполяции.

Таблица 3.9

Темпе- ратура,											ного	
•°C	1	1,1	1,2	1,3	1,4	1,5	1,6	1,8	2,0	2,2	2,4	2,6
0	22,184	22,061	21,958	21,870	21,794	21,728	21,670	21,572	21,493	21,428	21,374	21,328
100	22,545	22,398	22,275	22,169	22,078	21,999	21,929	21,812	21,717	21,640	21,574	21,519
200	22,908	22,742	22,602	22,482	22,379	22,289	22,210	22,077	21,970	21,882	21,808	21,745
300	23,324	23,142	22,989	22,858	22,745	22,647	22,560	22,415	22,300	22,202	22,121	22,052
400	23,750	23,554	23,390	23,249	23,128	23,022	22,930	22,774	22,648	22,544	22,457	22,384
500	24,192	23,985	23,811	23,662	23,533	23,421	23,322	23,157	23,023	22,914	22,822	22,743
600	24,631	24,413	24,229	24,073	23,937	23,819	23,716	23,541	23,401	23,285	23,188	23,106
70 0	25,069	24,840	24,648	24,484	24,342	24,218	24,109	23,927	23,780	23,659	23,557	23,471

Продолжение табл. 3.9

Темпе- ратура,												
•°C	1	1,1	1,2	1,3	1,4	1,5	1,6	1,8	2,0	2,2	2,4	2,6
800	25,490	25,251	25,050	24,879	24,731	24,602	24,488	24,298	24,144	24,018	23,912	23,822
900	25,896	25,648	25,439	25,261	25,107	24,973	24,855	24,657	24,487	24,366	24,256	24,162
1000	26,278	26,021	25,804	25,620	25,460	25,321	25,199	24,993	24,828	24,692	24,578	24,481
1100	26,641	26,375	26,151	25,960	25,795	25,652	25,525	25,313	25,142	25,001	24,883	24,783
1200	26,987	26,713	26,482	26,286	26,116	25,967	25,837	25,618	25,442	25,296	25,175	25,071
1300	27,311	27,029	26,792	26,589	26,415	26,262	26,128	25,903	25,722	25,572	25,447	25,341
1400	27,618	27,328	27,085	26,877	26,698	26,541	26,404	26,173	25,986	25,833	25,705	25,596
1500	27,907	27,610	27,361	27,148	26,965	26,805	26,664	26,427	26,237	26,080	25,948	25,836
1600	28,175	27,873	27,618	27,400	27,212	27,049	26,905	26,663	26,468	26,308	26,173	26,059
1700	28,432	28,123	27,863	27,641	27,449	27,282	27,135	26,888	26,690	26,526	26,389	26,272
1800	28,669	28,354	28,089	27,863	27,668	27,497	27,348	27,096	26,894	26,727	26,587	26,469
1900	28,895	28,575	28,305	28,076	27,877	27,704	27,552	27,296	27,090	26,921	26,781	26,658
2000	29,107	28,782	28,508	28,275	28,073	27,898	27,743	27,483	27,274	27,102	26,958	26,835
2100	29,310	28,980	28,703	28,466	28,262	28,083	27,926	27,663	27,451	27,276	27,130	27,005
2200	29,503	29,169	28,888	28,648	28,441	28,260	28,101	27,834	27,619	27,442	27,294	27,168
2300	29,680	29,342	29,057	28,815	28,605	28,422	28,261	27,991	27,774	27,595	27,444	27,317
2400	29,851	29,510	29,222	28,976	28,764	28,580	28,471	28,144	27,924	27,743	27,591	27,462
2500	30,011	29,666	29,375	29,127	28,913	28,726	28,562	28,286	28,064	27,881	27,728	27,598
2600	30,164	29,816	29,523	29,272	29,056	28,868	28,702	28,424	28,199	28,015	27,860	27,729
2700	30,311	29,960	29,664	29,412	29,194	29,004	28,837	28,557	28,331	28,144	27,988	27,856
2800	30,451	30,097	29,799	29,546	29,326	29,135	28,966	28,684	28,456	28,269	28,111	27,978